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Here we present the results of using techno-economic analysis as constraints for machine learning guided
studies of new metal hydride materials. Using existing databases for hydrogen storage alloys, a regression
model to predict the enthalpy of hydrogenation was generated with a mean absolute error of 8.56 kJ
mol™ and a mean relative error of 28%. Model predictions for new hydride materials were constrained by
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techno-economic analysis and used to identify 6110 potential alloys matching the criteria required for hy-
drogen compressors. Additional constraints such as alloy cost, composition, and likely structure were used

DOI: 10.1039/c8me00005k to reduce the number of possible alloys for experimental verification to less than 400. Finally, expert heu-

ristics and a novel machine learning approach to approximating alloy stability were employed to select an

rsc.li/molecular-engineering Fe-Mn-Ti-X alloy system for future experimental studies.

Design, System, Application

Using machine learning techniques to predict chemistries of materials with novel properties has been of great interest to the materials community over the
past few years. Unfortunately, many of these approaches will predict the figure of merit for any combination of materials with no insight as to the potential
stability of the material or its engineering feasibility. While evaluation of material stability can be challenging, the application of techno-economic con-
straints to materials design is relatively straightforward and can be implemented early in the prediction process. In this manuscript, we used a free open
source materials machine learning platform on a free open source experimental database to generate thousands of new alloy combinations with favorable
enthalpies of formation for high pressure compressors. We then whittled down our list of potential alloys using a series of engineering constraints such as
enthalpy values, cost, and simple stoichiometric rules. This enabled us to focus our stability check to the Fe-Mn-Ti-X system. Comparison of the Fe-Mn-
Ti to CALPHAD, previous experimental studies, and multiple DFT studies resulted in contradictory predictions of stability indicating that it is a system with

the potential to provide insights to materials scientists and engineers.

Introduction

Recently, there has been an explosion in the use of machine
or advanced statistical methods for materials science. For
about a decade, groups have been building automated data
analysis tools to extract knowledge from large datasets.'™ Ef-
forts in this area have included automated phase diagram
generation from combinatorial samples and the use of
unsupervised techniques to extract information from spectral
scanning probe microscope datasets.””” In the past few years,
new materials discovery via machine learning has become in-
creasingly of interest.*'° Large data mining efforts have dem-
onstrated that machine learning models, trained on compu-
tational and experimental datasets, can create predictions of
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materials that satisfy key scientific or technological criteria,
the so-called “inverse design” problem.''™® For instance,
there has been great progress in using large datasets built
from finite element analysis simulations to design structural
alloys with favorable microstructures and elastic properties.'*
Recently, Ward et al. demonstrated a generalized machine
learning platform, called Magpie, that ingests experimental
or theoretical datasets, maps material composition into a
multi-dimensional attribute space, and creates models that
can predict material performance.'”

In its current iteration, Magpie enables the predictions of
tens of thousands of potential materials with promising prop-
erties via algorithms which are largely physics agnostic. In a
recent paper from Ward et al., the band gaps of more than
4500 compounds from the OQMD database were predicted
via regression analysis, an exciting development since band
gaps are computationally difficult to predict via DFT."® From
their work, they identified 223 materials that were likely to
have favorable band gaps. This presents a new challenge for
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the materials science field in that it is not possible to experi-
mentally validate all these new materials in a reasonable
amount of time. Even high-throughput (combinatorial)
methods are not capable of efficiently screening 223 com-
pounds distributed among tens of three component systems
at the rate of hypothesis generation. An additional problem
is that of experimental material stability. The previous exam-
ple creates a model that can calculate the band gap for any
potential compound but does not determine if it is (meta)
stable or its likely crystal structure. In this case, using the
OQMD dataset partially mitigated this concern, but many
studies focus on exploring materials outside of OQMD or
other existing theoretical databases. Material properties are
intimately linked to their crystal structure, so having an idea
of what structures a new compound is likely to form in would
provide an expert insight into whether the material will ex-
hibit the predicted properties. Interestingly, predictions are
also made in the absence of other concerns such as material
cost or compatibility with existing technologies or health and
safety concerns associated with production, which could be
pivotal in deciding which material leads to pursue.

Here, we demonstrate a layered approach to constraining
the theoretical-experimental search space by applying a se-
ries of techno-economic criteria prior to and after materials
prediction. Our proof of principle case is in the prediction of
new high-pressure hydrogen storage alloys to be used in vehi-
cle fueling stations. Although the DOE currently sees multiple
avenues for successfully delivering hydrogen to fueling sta-
tions, each requires the compression of hydrogen to pres-
sures exceeding 500 bar. This presents a techno-economic
challenge as the compression technology must meet specific
technical criteria to be viable (e.g. H, delivery pressure, com-
pressor specific energy, etc.), but it also must meet economic
criteria (e.g. uninstalled capital cost, annual maintenance
cost, and lifetime). In principle, compressors making use of
hydrogen storage alloys would have lower cost, higher flow
rates, and better reliability than mechanical compressors.
However, there is currently no ready-made materials technol-
ogy that matches all the DOE techno-economic criteria. There
is, however, a wealth of materials data within open hydride
databases that could be used to train machine learning
models to guide researchers.

In this study, the existing DOE metal hydride database
was consumed, filtered, and then used as training data for a
regression model that predicts the enthalpy and entropy of
formation for metal hydrides. The regression model was
found to accurately predict values of enthalpy (Pearson's cor-
relation coefficient ~0.8) but was substantially worse at
modeling entropy. Overfitting of the training set was tested
by using the model to predict the values of enthalpy for 47
held out samples with a mean average error (MAE) of 3.37 k]
mol™ and a mean relative error (MRE) of 20%. The model
was then used to predict a set of new potential hydrogen stor-
age alloys constrained by TEA considerations including ele-
ments to be used and the enthalpies required to meet techni-
cal targets, resulting in 6110 alloy predictions. An additional
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set of TEA constraints including overall alloy cost and prox-
imity of the composition to Laves-type phases was used to
further reduce the potential alloys by more than an order of
magnitude. Although this substantially contracts the poten-
tial materials search space, it does not address the issue of
material stability or structure. Subsequently, a combination
of expert heuristics and cluster expansion was used to narrow
down to quaternaries of the form Fe-Mn-Ti-X and to deter-
mine if the materials are likely to be stable near the predicted
region in the Fe-Mn-Ti ternary (Fig. 1).

Techno-economic analysis
Metal hydride-based hydrogen compressors

The US DOE envisions two main options for large scale hy-
drogen delivery. One employs a hydrogen compression unit
(pressures up to about 100 bar) with hydrogen storage in geo-
logic formations. The delivery scenario is realized by a sepa-
rate high pressure compression system (with pressures up to
approximately 875 bar) that delivers the hydrogen to distrib-
uted pipelines.'® TEA was performed targeting high pressure
compression systems to reach pressures on the order of 875
bar as required by the DOE targets,'® shown in Table 1.

Presently, mechanical compressors cannot achieve the
DOE targets. Mechanical compressors account for over half
of the station's cost, have lower reliability than that required
by the DOE targets and have low flow rates for a mature fuel
cell market. Failure in conventional compressors is often due
to fatigue associated with moving parts, and is exacerbated
by the repeated starts and stops expected at fueling
stations."”

Hydrogen compressors based on metal hydride materials
have the potential to overcome all the limitations associated
with traditional mechanical compressors and to achieve all
the targets shown in Table 1. MH materials absorb hydrogen
through an exothermic chemical reaction and release the
absorbed hydrogen reversibly, through an endothermic

‘ a .
Constrained Materials and Enthalpy Unconé;ﬁ:fgt?;:e e

Unverified Stability and

‘ Constrained Price and Composition .
- 7Commonallt7y

Final Materials Selection (10’s)

‘ Constrain Expert Heuristics and Likely Material Stability

Fig. 1 Schematic representation of the process for generating initial
materials predictions and reducing the overall materials search space
to those likely to have the appropriate properties and cost, and that
were likely to be stable.
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Table 1 DOE techno-economic targets for refueling station hydrogen compressors at 100 kg, ht

FY2020

Ultimate target

Availability 85%
Compressor specific energy (kW h kg™)
Uninstalled capital cost ($) for 100 kg h™

Annual maintenance 4%
Outlet operating pressure (bar) 875
Lifetime (years) 10

chemical reaction. The equilibrium pressures for the chemi-
cal reactions are a direct function of their operating tempera-
tures. Therefore, hydrogen can be absorbed at low tempera-
tures and pressures and, by providing higher temperature
thermal power during the desorption process, the hydrogen
pressure can be increased without the use of external electric
power.

Typical MH equilibrium isotherm profiles are shown in
Fig. 2, for two isotherm pressure profiles at different temper-
atures (T and T, with T, > Ty) for a nominal MH material.
For the current application, the relatively flat absorption/de-
sorption regions, where the MH phase change occurs and
most of the hydrogen is absorbed/desorbed, are of interest.

The reactions in these regions can be approximated as oc-
curring at a relatively constant pressure, for a fixed tempera-
ture, thus identifying the equilibrium operating conditions
(e.g. P1-Ty and P,-T, in Fig. 2). The objective is to find a ma-
terial operating at P; on the order of 100 bar and correspond-
ing T; on the order of 30-40 °C and P, on the order of 875
bar and corresponding T, of about 120-140 °C. In addition,
the isotherm two-phase reaction should occur at near con-
stant pressure with minimal hysteresis (i.e. variation of the
equilibrium pressures) during charging and discharging.

A comprehensive review of the available MH materials and
some of the already developed heat transfer and pressure ves-
sel concepts, operating at maximum pressures on the order
of 600-700 bar can be found in ref. 18. Currently available
MH for hydrogen compression are based on intermetallic ma-
terials. They can be classified into two main groups: (1) the

A Pressure

Temperature T,

Jrmmmm e

A

Temperature T, H, absorption

H, desorption

n

H2 content in MH

Fig. 2 Typical equilibrium temperature and pressure relationship for
common MH materials during absorption at T; and desorption at T>.
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1.6 (100 bar pipeline delivery)
275000 (100 bar pipeline delivery)
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1.4 (120 bar pipeline delivery)
170000 (120 bar pipeline delivery)
2%
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>10

rare earth MH materials, such as LaNi; or MmNi; hydrides
and (2) the Ti-based MH materials. Given the current operat-
ing pressure range, the Ti-based MH materials (Laves phase
or AB, phase) represent the only feasible group. These mate-
rials are generally based on Ti (A element) with different
possible combinations of other metal elements, such as Cr,
Mn, V, and Ni, as the B elements. Sometimes small quanti-
ties of Zr are included in the ‘A’ term, to replace Ti. In gen-
eral, the A and B sites can incorporate different alloying ele-
ments and exhibit improved material performance (e.g.
reduced hysteresis and flatter plateaus) for the required op-
erating temperatures and pressures. Depending on the for-
mulation of the AB, materials, the operating pressures can
range between 10 bar and over 1000 bar. A comprehensive
list of existing AB, materials for hydrogen compression ap-
plications, both for low and high pressures, can be found in
ref. 18.

Acceptable MH material property envelope for hydrogen
compressor

An inverse system analysis has been carried out with the ob-
jective of assessing the technical and economic properties of
the ideal MH compression system meeting the DOE targets.
A comparison with the currently available AB, materials has
also been carried out to evaluate the gaps between the ideal
and the current MHs and to guide the discovery of new
materials.

Techno-economic model and assumptions. A high level
steady state lumped parameter techno-economic model was
developed to analyze the performance of the proposed com-
pression system. The system mass balance is expressed as fol-
lows. The mass of each MH material (the compression sys-
tem comprised two parallel MHs) can be estimated as:

iy A
myy =

(1)

wf

Eqn (1) assumes that the absorption time is equal to the
desorption time (At).

The equilibrium pressure and temperature values during
absorption and desorption are estimated using the van't Hoff
equation (eqn (2)), which is derived from the Gibbs energy
expression:
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Eqn (2) expresses the van't Hoff relationship assuming the
material hysteresis is negligible, thus implying that the reac-
tion enthalpy and entropy values are the same for charging
and discharging processes.

The system energy balance was assessed as follows. Dur-
ing the hydrogen charging/discharging process, the cooling/
heating power was estimated including: (1) the chemical re-
action latent thermal power, (2) the MH material sensible
cooling/heating power to be provided to reach the required
operating pressure, and (3) the wall and tubing material sen-
sible cooling/heating power to achieve the required operating
temperatures for the MH material. More details about the
technical model will be provided in a future publication.

The technical assumptions relative to the ideal MH mate-
rial and system properties as well as the initial constraints,
data, and assumed degrees of freedom are summarized in
Table 2. The unknown quantity of the technical analysis is
the material reaction enthalpy required to achieve the DOE
efficiency target for the 2020 scenario.

The ideal material properties are assumed based on typi-
cal values for Ti-based Laves materials. The overall thermal
conductivity value takes into account inclusion of expanded
natural graphite at 10 wt% or metal foam structures to in-
crease the thermal conductivity.'® The weight capacity of the
material (1.1%) was assumed based on the typical Ti-based
high pressure AB, values, between 1% and 1.7%."'® The con-
servative assumption is justified by the reduced Ti content in
the ideal metal hydride material (as explained in the next sec-
tion), which results in a decrease of the material weight ca-
pacity. A reasonable charging/discharging time of 8 minutes
(i.e. total cycling time of 16 minutes) was assumed, based on
the fast kinetics typical of these materials. The system was
analyzed for hydrogen flow rates of 100 kg h™, to be com-
pressed between 100 bar and 875 bar at temperatures be-
tween 40 °C (MH equilibrium temperature corresponding to
100 bar) and 120 °C (MH equilibrium temperature corre-
sponding to 875 bar).

The economic-financial model was developed as described
in the following. The system installed cost was calculated

Table 2 Ideal metal hydride material property assumptions and
constraints

MH material properties

Bulk density (kg m™) 3000
Overall material thermal conductivity (W m™ K™) 8

wf (%) 1.1

At (min) 8
Porosity (%) 35
System constraints

Pressure (bar) 100-875
Temperatures (°C) 40-120
Hydrogen flow rate (kg h™) 100
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based on the MH material cost and the cost of the additional
equipment required to transfer the required heating/cooling
power. A baseline initial configuration based on traditional
shell and tube heat exchangers was assumed. The required
heating/cooling thermal power was assessed based on the
DOE efficiency target (required electricity per kg of hydro-
gen), evaluating the primary thermal input to produce the re-
quired electricity. An overall thermal-electric efficiency of
34% was assumed, including the electric transmission ineffi-
ciencies. The lifetime cost of the MH compressor system was
calculated and compared with the corresponding values
obtained for the mechanical compressor that achieves the
DOE targets.

Results and considerations. The techno-economic model
was applied to find the thermodynamic properties (i.e. reac-
tion enthalpy) and economic properties (i.e. cost of the MH
material) required to fully meet the DOE targets, with the as-
sumptions and constraints shown in Table 2 and described
above. The techno-economic analysis results are shown in
Table 3.

A MH material with a reaction enthalpy on the order of 22
kJ mole"l, reaching pressures of 875 bar at temperatures on
the order of 120 °C, can meet the DOE 2020 efficiency target.
The enthalpy target represents a feasible value for AB, type
high pressure metal hydrides; however, very few known Ti
based MHs can meet this target."® From an economic per-
spective, a treated material having a cost of $250 kg™ (or
lower) can achieve the lifetime cost required to meet the DOE
economic targets. The material cost is relative to the free on
board (FOB) cost of the MH powder, acquired in large quanti-
ties and already processed (i.e. annealing process included in
the cost). The most common Ti-based MH materials, ac-
quired in minimum quantities of about 10 kg, have costs on
the order of $800 kg ™', including heat treatments, with values
on the order of $1800 kg™* for hydrides with high Cr content,
such as TiCr;4.>° Based on the data available from JMC
(USA)*>**! the ratio between the current Ti MH material FOB
cost and the raw MH material cost is approximately 155,
ranging between a minimum of 130 and a maximum of 180.
In addition, the data available from JMC (USA) showed that
only a reduction of the Ti content to values of approximately
20-25%, with inclusion of other inexpensive elements (e.g.
Fe, Mn), along with massive quantity production have the po-
tential to bring the cost down to the required values. Thus,
the required FOB cost target can be achieved only if the fol-
lowing conditions are met: (1) raw MH material cost equal to
($250 kg '/155) = $1.6 kg™, (2) expensive elements are elimi-
nated from the material formulation, including V, Zr, Mo,
and Cr, and (3) the Ti molar content is reduced to less than

Table 3 Ideal MH material properties required to meet the DOE 2020
techno-economic targets

Reaction enthalpy (kJ moly; ") <22

Operating pressure (bar)/temperature (°C) 100-875/40-120
FOB material cost ($ kg ') <250

Raw MH material cost ($ kg ™) <1.6

This journal is © The Royal Society of Chemistry 2018
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20-25% in the material formulation. The results of the TEA
in Table 3 were used as constraints for the ML model de-
scribed below.

DOE database ingestion

To provide Magpie a training data set, the entire “Hydrogen
Storage Materials Database” was downloaded from the De-
partment of Energy's Fuel Cell Technologies Office.”> Al-
though the website offers several search and filtering tools,
none of those were employed and all dataset cleaning was
done locally. The Hydrogen Storage Materials Database con-
tains the composition and hydrogen gravimetric capacity of
2722 different hydrogen storage materials spread out over tra-
ditional interstitial Laves phase metal hydrides, complex hy-
drides, magnesium hydrides, solid solution interstitial hy-
drides, and miscellaneous hydrides. More fundamental
thermodynamic data, such as the enthalpy and entropy of
formation, are reported only for a subset of the overall alloys.
For this study, only reversible metal alloys were used (e.g.
no complex hydrides), leaving 1815 compounds in the train-
ing set. A second filter was applied to eliminate compounds
for which the enthalpy of formation was not explicitly
reported in the table, further reducing the initial training set
to 545 compounds. Laves phases are heavily represented in
the resulting dataset, particularly AB, and AB; structures like
TiCr, or LaNis which have been heavily studied in the techni-
cal literature, see the histogram in Fig. 3. The solid solution
and miscellaneous labeled data were kept because Laves
phase materials are often heavily A or B site substituted. We
reasoned that information from the solid solution data could
empirically inform the model about the role of substitution in
determining the value of enthalpy and entropy. Also, includ-
ing the miscellaneous dataset provided additional stoichiome-
tries of metal hydrides that didn't fall into the traditional
Laves phase regions potentially reducing bias in the models.
Entropy values not contained within the original dataset were
calculated using the van't Hoff relationship if the equilibrium
pressure was given for any temperature. This yielded a total of
503 total compounds with associated entropies for training.

Machine learning model development

The machine learning model was created using the Magpie
code developed by Ward et al.'®> Magpie first transforms each

200

e
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Fig. 3 Histogram of structural types contained in the training data set.

This journal is © The Royal Society of Chemistry 2018

Paper

compound in the training set into a set of 145 attributes that
are built from properties like stoichiometries, elemental
property statistics, electronic structures, and ionic compound
attributes. The models and attributes, as built, did not explic-
itly include the structure of each compound. This provides
the developed machine learning model a robust set of ma-
chine interpretable descriptors for subsequent model
training.

A few simple models from the Weka software platform, for
instance RepTree, Random Forest Regression, and Neural
Networks,>® were used to predict hydride enthalpies. We
found that 10-fold validated Random Forest Regression pro-
vided the highest Spearman (0.8031) and Pearson (0.7558)
correlation coefficients of the three methods tested. RepTree
provided Pearson and Spearman coefficients of 0.6829 and
0.6747, respectively, while for the neural network both coeffi-
cients were below 0.5. For Random Forest Regression, the
mean absolute error (MAE) is 8.56 k] mol ", the mean relative
error (MRE) is 28% and the ROC value is 0.79. In Magpie, the
ROC value is calculated by classifying the predictions as being
above or below a moving threshold value from the minimum
to maximum predicted value. The calculated MAE is relatively
large; however, a cursory investigation of the dataset gives a
strong indication that the error in the predictions is at least
partially caused by the spread of the enthalpy values reported
for any given compound. For instance, Mg,Ni has 13 different
values for the enthalpy reported ranging from 31.3 k] mol™ to
71.3 kJ mol™* with a mean of 62.9 k] mol™ and an experimen-
tal MAE of 5.2 k] mol ™. As an extreme example, TiCu has two
enthalpy values reported, 126 kJ mol™ and 75 kJ mol ™.

To validate that the model was not overfit, we used a hold-
out dataset. 46 alloys outside of the Hydrogen Storage Mate-
rials Database and their associated thermodynamic data were
selected from the literature. The model was used to predict
their enthalpy of formation and the predictions were then
compared to the literature values. Comparison between the
known and predicted values revealed a lower MAE of 3.4 kJ
mol™ and a lower mean relative error (MRE) of 20% than
were obtained during the 10-fold cross validation of the full
training set. The 10 compounds with the highest relative er-
ror include several Ti-Cr based AB, structures that have
B-site substitution with Mn, Fe, Mo, etc., and a few TiCrMn
related alloys. These compounds have a relative error in ex-
cess of 37.5% with a maximum error of 64.4%. The next
group of alloys all show similar structures/base materials but
with the relative error decreasing to below 20%. Interestingly,
one alloy that the model under-predicts is TiCr; 75; the model
predicts an enthalpy of 21 kJ mol™ but the experimental
value is reported as 28.04 k] mol". The experimental value
here is somewhat surprising. In the hydride database, TiCr,,
TiCr, o, and TiCr, g have average reported enthalpies of 26.35
kJ mol™, 26.19 k] mol™", and 19.6 k] mol™, respectively,
marking the predicted value as being intuitively correct.

Including these 46 materials into the training of the
model decreases the Pearson's correlation to 0.7690 and in-
creases the Spearman's correlation to 0.8095, with little
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impact on the overall MAE and ROC AUC, although for the
hold-out compounds, the MAE reduces to 1.11 k] mol ™ and
the MRE reduces to 4.6%. The model developed using both
archival and hold-out data was used for all subsequent
studies.

Similar analysis was performed to develop models for
predicting the entropy of hydrogenation. The best performing
model was still Random Forest Regression; unfortunately a
convincing case for a strong model couldn't be made. For in-
stance, the Pearson's and Spearman's correlations were found
to not exceed 0.46 and 0.42, respectively. Here, the issue is
likely the dispersion of data in the dataset. Although it is
expected that, on average, the entropy should fall somewhere
around 130 J mol™ K™, the values in the dataset vary from 9
Jmol™ K™ to 625 J mol ™" K with an average of 110 J mol™
K™ and a standard deviation of 35 ] mol™ K, see Fig. 4. An
attempt was made to constrain the training data set to a “re-
alistic range” of 95 J mol™ K™ to 140 J mol™ K%; this re-
duced the training set to 282 entries but didn't substantially
improve the predictions.

Predicting materials based on TEA constraints

From the above model, predictions for the enthalpy of forma-
tion of metal hydrides can be made with reasonable cer-
tainty, given the spread in experimental values from the ar-
chival dataset. To limit the range of predictions that are
made, a set of criteria from TEA were implemented as filters
at different stages during the prediction cycle. Filters for the
elemental constituents of the alloy and overall enthalpy were
implemented prior to predicting new alloys. Elements consid-
ered in this study were identified and chosen based on a bal-
ance of their known hydrogen storage properties and cost.
The full list of elements considered was Ca, Al, Si, Fe, Mg,
Na, Mn, Zn, Cr, Mo, and Ti. The maximum number of ele-
ments per compound was varied from 2-4. Based on the tar-
gets identified by the TEA and a MAE of 8 k] mol™, predic-
tions having enthalpies above 15 k] mol ™" and below 40 kJ
mol ™" were considered. Any compound within 0.3 at% of any
compound contained in the dataset, as measured by the L1
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norm (Manhattan distance), was discarded from the pre-
dicted dataset. Once the predictions were run, a total of 6110
different alloys were proposed with values of enthalpy rang-
ing from 18 kJ mol™ to 30 kJ mol .

To reduce the number of possible alloys for consideration,
a series of post-prediction filters were employed based on the
TEA and expert heuristics. The first filter down sampled the
predicted alloys based on a $1.6 kg™* threshold for the alloy
cost. This dropped the number of possible alloys by nearly a
factor of six down to 962 possibilities. The second filter was
used to limit potential material compositions to those similar
to AB, AB,, A,B, or ABs Laves phases. The rationale was that
the training data were predominantly composed of Laves
phases so the predictions were likely to be most accurate for
that class of materials. This criterion further reduced the
number of alloys to be considered to the 533 contained in
the table in the ESILf As a note, the price of Ti depends very
strongly on the purity. The previous discussion supposed a Ti
cost of $3.8 kg'. If higher purity Ti is required ($8 kg™), then
336 alloys are possible.

Several trends are apparent in the remaining materials set;
firstly ordered in terms of relative abundance of elements, the
predictions contain: Fe (396 predictions), Mn (376 predictions),
Ti (177 predictions), Si (141 predictions), Al (131 predictions),
Mg (111 predictions), Cr (59 predictions), and Mo (14 predic-
tions), indicating that almost all remaining predicted com-
pounds were ternary or quaternary alloys that used Fe-Mn as a
base alloy. No alloys containing Ca, Na, and Zr were present in
the final list. The predicted enthalpies varied from 22 kJ mol™
up to 30 kJ mol ™", the predictions are skewed heavily towards
higher enthalpies with more than 90% of all predictions being
above 27 kJ mol ™. Not surprisingly, Ti containing compounds
dominate the predictions at lower enthalpies and thus drive up
the cost. Compounds with enthalpies below 25 k] mol™ are all
more than $1.2 kg™ as a consequence.

The final step in choosing alloys for subsequent study was
verifying that they can form stable single-phase alloys, either
solid solution or Laves phases, and were likely to absorb hy-
drogen. Fe-Mn was not reported in the database as being a
hydrogen storage alloy and indeed the binary phase diagram

400
300

200

Count

100

Entropy (J/mol*K)

Fig. 4 Histograms of enthalpy and entropy values for the training data set (original DOE dataset and the holdout set). Note that the entropy
values have a large number of unphysical values above and below the value of 130 J mol™ for H, gas phase hydrogen.
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for Fe-Mn does not exhibit any Laves or intermetallic type
structures. The database does, however, contain many AB,
structures that incorporate Mn and Fe as co-B site substitu-
ents. Some of these compounds including ZrMnFe and
Zr, ;Tio sMnFe show enthalpies between 20.4 kJ mol ! and 10
kJ mol™, therefore compounds containing mixtures of Mn
and Fe would tend to be identified as favoring low enthalpies.
Both TiMn, and FeTi are known intermetallics that can store
hydrogen at low enthalpies, 26.7 k] mol™ and 24.6 kJ mol ™,
respectively. Since Mn and Fe are miscible within one an-
other, compounds of the form Ti(Mn,_,Fe,), could be stable
for 0 < x < 1. Likewise, Mn and Ti have some miscibility and
thus FeTi,-Mn alloys could exist with Mn substituting into
both the A and B sites. One predicted alloy, Tig»sMng 25F€0 50,
could be seen as an A and B site substituted TiMn, or as an
extension of the Fe-Mn solid solution. There is also a known
TiFe, C,, phase with an alloying window at high temperature,
although this composition has not been reported to absorb
hydrogen.>* Phase diagrams from Murakami et al. and Dew-
Hughes suggested a large region of solubility between TiFe,
and TiMn, which would include Ti compositions down to 20
at% at 1273 K.?®> Subsequent CALPHAD studies confirmed the
Ti(Mn,_,Fe,), tieline but were inconclusive in terms of the
range of A-site substitution.>®

From this analysis, 10 alloys (Table 4) were selected for fu-
ture study. Ti-Mn-Fe was chosen as the base alloy and qua-
ternary alloys containing Mg, Si and Al were selected as po-
tential additives. Mg and Al were chosen to improve
gravimetric capacity and reduce alloy cost, while Si was cho-
sen primarily to reduce cost. Since all of the alloys were
based on the Ti-Mn-Fe alloy, a genetic algorithm guided
DFT approach was used to evaluate the likelihood of alloy
stability off the TiMn,-TiFe, tieline.

We used the genetic algorithm for structure and phase
prediction (GASP) to identify the low-energy Ti-Mn-Fe struc-
tures®” using the Vienna ab initio software package (VASP)*®
as the energy calculator using density functional theory. The
genetic algorithm started with an initial population of ran-
dom structures that broadly sampled the phase space. The
structures were then relaxed and low-energy structures were
preferentially selected as parents to create child structures
using genetic operators such as mutation and mating. When
enough child structures had been created, they in turn were se-

Table 4 Machine learning proposed compositions from the Mn-Fe-Ti-X
system with promising enthalpies of formation

Alloy composition Enthalpy (k] mol™)

Ti.20MNg 20F€0.50510.10 25.8
Tio.25Mnyg 25F€q 50 21.8
Tig.25MNg 20Alp.05F€0 50 24.4
Tig.25Mnyg 20F €0 50810.05 25.5
Mgo.05Tip.20MNg 25F€0.50 26.8
Mgo.10Tio.15MNg 25F€0.50 26.6
Tig.25Mng 10Alp 05F€0.60 26.4
Tio.2sMng_10F€0.60S10.05 26.7
Tio.30Mng 10Alp 05F€0 55 27.0
Mgo.10Tip.20MNg 20F€0.50 27.3
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lected to make offspring of their own. In the TiMnFe structure
searches, the number of atoms varied, and we used an upper
limit of 30 atoms per cell. The maximum lattice length was
constrained to 50 A and only primitive unit cells were created.
We employed the phase-diagram searching mode of the algo-
rithm, which allows the stoichiometry to vary, and we stopped
the searches after 500 structure relaxations. We employed the
Opb88vdw functional, a 600 eV plane wave cutoff and a k-point
mesh density of only 20 k-points per angstrom for spin-
polarized DFT calculations using the JARVIS-DFT workflow.>’
In Fig. 5, the energy above the convex hull is shown in a
colormap with linear interpolation for the Ti-Mn-Fe system
for structures identified during genetic algorithm based DFT
calculations. The genetic algorithm attempted 5800 structure
searches and narrowed down to predict 100 structures for
which DFT calculations were performed. All the phases found
during the genetic algorithm search are used in calculating
the convex hull and then the stable ones are used in generat-
ing the triangular surface plot in Fig. 5. These constraints
were based on bond-length and other criteria mentioned
above. The predicted stabilities were based on the heat of for-
mation values obtained from DFT. All the TiMnFe based
compounds had negative formation energies, indicating that
these compounds should be energetically possible to form.
The heat of formation data were then converted to a convex
hull to realize the relative stability of materials. The deep
blue color in Fig. 5 indicates that the systems are on the hull
or are the stable material. Here, the TiMn,-TiFe, region is
not observed to be stable (as shown in Fig. 5), along the
TiMn,-TiFe, tieline and only the TiMn, phase was found to
be stable. In contrast, the Materials Project clearly shows the
stability of both the TiMn, and TiFe, phases and previous ex-
perimental work and theoretical work have illustrated the

0.24

0.21

0.09
0.06

0.03

Fe Mn 0.00

Fig. 5 Predicted stability of Ti-Mn-Fe based on crystal structure
searches using genetic algorithm and heat of formation calculations
using density functional theory. Points are colored based on relative
likelihood of formability at O K. The color bar shows the energy above
the hull values. The higher the energy above the hull value, the more
unstable the material should be.
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stability along the tieline.>® Here, it is likely that the genetic
algorithm was not able to identify the stable phase from the
100 structures calculated via DFT.

Conclusions

Here, we present the results of using techno-economic analy-
sis as constraints for machine learning guided studies of new
metal hydride materials. Using existing databases for hydro-
gen storage alloys and regression analysis, we were able to
identify 6110 potential alloys that met the thermodynamic
criteria required for hydrogen compressors. Additional con-
straints such as alloy cost and composition were used to re-
duce the number of possible alloys for experimental verifica-
tion to less than 400. Finally, expert heuristics and a novel
machine learning approach to approximating alloy stability
were employed to select the Fe-Mn-Ti-X alloy system for fu-
ture experimental studies. Interestingly, we observed
conflicting theoretical predictions of material stability in the
Fe-Mn-Ti range with two separate DFT studies and an early
CALPHAD study providing quite different predictions. In con-
trast, previous experimental studies of Fe-Mn-Ti have indi-
cated a large range of alloy stability in the composition re-
gions predicted to be interesting. This suggests that Fe-Mn-
Ti would be a potentially interesting system for exploration
both experimentally (to reconfirm the ranges of solubility)
and computationally via modern CALPHAD techniques.

Nomenclature

FOB Free on board

Metal hydride

Mass (kg)

Mass flow rate (kg s™)

Pressure (bar)

Temperature (K)

Metal hydride reaction enthalpy (k] moly;, ')

S Metal hydride reaction entropy (k] K" moly, )
Universal gas constant (8.314 J moly, ' K'')

At Charging or discharging time (s)

wf  Weight capacity of the metal hydride (kgx, kgmn ')

N v s 3
T z

= >

Subscripts

MH Metal hydride
H, Hydrogen
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